There are 19 different spatial filters that can be applied to a data set. These are described in the table below. A filter can be applied to the entire volume or to selected objects if an object map is loaded.

Filter Type	Description	Method
Low Pass	dampens noise, smoothes volume	replaces the value of each voxel with the average value of the neighborhood*
Unsharp	eliminates homogeneous regions, highlights edges and noise	subtracts a low pass filtered volume from the original volume
Unsharp Enhance	combines unsharp with original volume	adds an unsharp filtered volume to the original volume
Sobel	highlights edges	performs a classic edge detection filter
Sobel Enhance	combines Sobel with original volume	adds a Sobel filtered volume to the original volume
Median	dampens noise, smoothes volume	replaces the value of each voxel with the average value of the neighborhood*
Rank	generic rank filter	orders all the values of voxels in the neighborhood* and returns the value corresponding to the rank in the ordered list†
Sigma	smoothes noise while preserving edges and thin lines	replaces the value x of each voxel with the average value of voxels in the neighborhood* having values of x \pm 2 σ \ddagger
VSF Mean	smoothes noise while preserving edges	replaces the value x of each voxel with the average value of voxels in the
	and thin lines	neighborhood§ having values of $x \pm \sigma$
Gradient	highlights edges	replaces the value of each voxel with the maximum absolute difference between its value and that of its orthogonal neighbors

Filter Type	Description	Method
AHE	enhances contrast for viewing (not for measurement)	adjusts voxel values based on histogram of a localized region¶
Anisotropic	reduces noise while preserving edges	performs 2D affine, unbiased or biased anisotropic diffusion for the number of iterations and time per iterationll specified
Convolution	smoothes noise, resulting in a blurry image	performs spatial convolution of volume with user-supplied point spread function
Inhomogeneity Correction	corrects low-frequency grayscale gradients	replaces voxel intensity with ${\rm I_i}$ * global mean / local mean, where ${\rm I_i}$ is the input voxel intensity
Sticks	suppresses noise while enhancing thin edges	applies directional masks and determines output based on Type parameter
Chamfer Distance Map	creates a map that may be used for shape recognition	calculates Chamfer distance of each voxel to nearest nonzero voxel
Euclidean Distance Transform	creates a map that may be used for shape recognition	calculates Euclidean distance of each voxel to nearest nonzero voxel
Adaptive Restoration	reduces noise using an adaptive method	degrades image by constant-power additive noise, then applies a low pass filter
Curvature	creates a map of instantaneous local surface curvature	sums binary voxel values in the 26-connected neighborhood of each voxel to give a curvature value from 0-26

*The neighborhood around each voxel is defined by the kernel dimensions selected in the Kernel Size options.

†The kernel size determines the number of voxels whose values are ranked, e.g. a 3 X 3 X 3 kernel has 27 voxels, a 5 X 5 X 5 kernel has 125 voxels and a 7 X 7 X 7 kernel has 343 voxels. The larger the kernel size, the more computationally intensive this filter becomes. It is recommended to use a smaller kernel size such as 3 X 3 X 3. In a 3 X 3 X 3 kernel, a rank of 1 would return the minimum value, a rank of 14 would return the median value and a rank of 27 would return the maximum value.

‡If fewer than 9% of the voxels in the kernel fall within the x ± 2σ range, the voxel in question will not be changed. Sigma (σ) is defined using the text box or slider bar.

§The circular neighborhood around each voxel is specified by the Ring parameter.

¶Clip Fraction — Specifies the limit of contribution of any given grayscale value, reducing the enhancement of noise in the resulting image or volume. This method is particularly effective for images which have subtle detail in both very bright and very dim regions of the image. It may also be used to expand the dynamic range of grayscale in a region which has subtle but significant changes.

IIA value of 0.25 is recommended for general use and will be used as the default if the supplied value is zero or negative. However, a value of 0.10 or less is required to guarantee stable behavior. The lower value will require more iterations but should be used if absolutely correct results are essential. This option is only available when Type is set to Affine.

AnalyzePro User's Guide

1. Applying a Filter to a Data Set

Download the Mouse_Femur

This exercise will show how to apply a median filter to a microCT bone data set.

 Select the data set in the AnalyzePro workspace 1 and open Process. 2

- Choose Spatial Filter as the Process Type.
- Choose a Filter Type. **4** Low Pass and Median filters are commonly used to smooth noisy data.
- Set the Kernel Size in the X, Y and Z dimensions. 5 A kernel size of 7 X 7 X 7 is often used for microCT data acquired using a PerkinElmer scanner.
- To toggle the Compare view, use the Compare Diff button. 6

•••
COMPARE
DIFF

- Click Process Volume.
- Once the processing is complete, the Save Volume button will become available. Click Save Volume.

- In the Save Volume window, choose to replace the input data set with the processed data set
 or to create a new data set.
- The new data set can be saved in any workspace in the current project and renamed in the File checkbox. Check the Replace Input Volume with Processed Volume box if you want to further process the processed volume. 11
 Click Save Volume. 12

Save volume - Process	
Replace contents	of 'Mouse_Femur' with the processed data. 9
Oreate a new work	kspace volume containing the processed data. 10
Workspace	Main 👻
File	Mouse_Femur_Med
📝 Replace	Input Volume with Processed Volume 11
	Save Volume 12